

Setting Up Your Sound Card for Digital Communications

14 August 2019

Setting Up Your Sound Card for Digital Communications

Table of Contents

On Application Implementation of Audio Support (both Windows and Mac OS)

Default Operating System Behavior (both Windows and Mac OS)

Windows Sound Devices Configuration

Mac OS Sound Devices Configuration

After Configuring the Operating System Default Audio Devices

Hot Microphones

Difficulties Presented by A Number of USB Audio Devices

On Application Implementation of Audio Support (both Windows and Mac OS)
When supporting audio devices, application developers have several choices:

1. Implement the application with full dependence upon default device selection and not provide the
user with any ability to select the device.

2. Implement the application with full dependence upon default device selection, but provide the
user with any ability to select the device.

3. Provide a full implementation that properly explores the device information that is exposed by the
operating system, and include user interface updates based on devices being attached or
detached after the application has launched.

The most common implementation is #2. This option is easy for the application developer to implement,
requiring very little code. But this option is not without its limitations, which are sometimes exacerbated by
the use of frameworks that are intended to make software development easier. The result is application /
user interface misbehavior that the user must determine how to resolve. In some cases, such as when an
application does not implement support for device attachment and detachment notifications, it may be
necessary to quit and re-launch the application after attaching or removing a device. In other cases, a
device may have to be removed in order to enable selection of the desired devices.

Imposing work arounds on the end user was not the intent of establishing plug and play devices. Operating
systems and device specifications were generated with the goal of making it seamless for the user to attach
and use a device. But a failure of application developers to have their applications fail to register with the
operating system for device attachment and detachment notifications, and a failure of device manufacturers
to properly adhere to the spirit of device specifications, coupled with operating system behavior that
imposes the 1960's style audio device redirection that is inherited from a 3.5mm headphone jack that cut
off the speakers when a headphone was attached, has lead to some significant difficulties for the end user
to understand how computer audio works and to resolve issue related to audio devices that could have been
implemented better.

This article intends to provide guidance for the radio amateur so that they can enjoy a better operating
experience when operating on digital modes, and to avoid issues that may be actionable by the FCC.

Users are encouraged to read the entire article, regardless whether Windows or Mac OS is used.

Default Operating System Behavior (both Windows and Mac OS)
In order to avoid having alert sounds (i.e. email notification sounds, text message sounds, VOIP / Skype
notification sounds) from being transmitted over the radio, and to avoid having VOIP / Skype use the radio
as a microphone source instead of the the computer’s microphone, it is critical that the Sound hardware on
the PC be properly configured.

When a USB audio device is attached to, both a Windows and a Mac OS computer will automatically
configure the USB audio device as the:

Default playback audio device, where all sound played by the computer are routed to the USB
audio device.

Default playback communications audio device, where all sound generated by the VOIP
applications, such as Skype, and intended to be heard by the user, are routed to the USB audio
device.

Default microphone audio device, where all sound recorded by the PC is routed from the USB
audio device.

Default communications microphone audio device, where all sounds recorded by VOIP
applications, such as Skype, and intended to carry the users voice, source audio from the USB
audio device.

Depending on the audio content being inadvertently played to the transceiver/transmitter, this can leave the
operator in violation of FCC regulations.

USB Audio Devices use a USB Composite Device interface, that encapsulates a USB Audio Streaming
Interfaces for both Input and Output, and a USB Audio Control interface, which describes the signal topology
within the device, and is shared by both the input and output streaming interfaces. It is the streaming
interfaces that are depicted in the Windows user interface as Sound devices.

All USB audio devices, whether built-in to the transceiver (i.e. as a Kenwood TS-590SG or similar transceiver
with built-in USB Audio), or externally interfacing the transceiver (e.g. an external USB Audio Device such
as a SignaLink USB), present themselves to the operating system as described above.

Attaching the USB Audio Device to the PC is subject to the above described behavior.

Although this operating system behavior is appropriate when attaching a USB headset, and emulates the
behavior that is common for 1/4 inch and 3.5mm jacks, this operating system behavior is not appropriate
when attaching a transceiver to the PC. Windows does provide manual control to override this default
behavior, and steps must be taken to ensure that the USB Audio Interface is only available to those software
applications (e.g. FLDIG and the NBEMS suite, WinLink, JS8Call, WSJT-X, etc.), that are intended to use the
transceiver.

While performing this configuration, we’ll also be setting the USB sound device levels.

IMPORTANT

If the USB Audio Device's USB cable is disconnected and then reconnected to the PC, and where
reconnection occurs to a different USB connector, you will need to perform the Sound configuration
procedure again. Windows will preserve the settings for the same USB audio device attached to the
same USB connector, but moving the USB audio device to another USB connector is treated as s
different device and will require reconfiguration of the Sound devices.

For this reason, it is advisable to not disconnect the USB Audio Device interface to the transceiver
after completing the configuration steps in his tutorial.

IMPORTANT

Digital communications presents a transmitter duty cycle from 80% to 100%. Your transmitter is not
designed to operate at these duty cycles. Further, any ALC activity, including ALC activity that is not
necessarily displayed on the ALC meter, will introduce distortion on your transmitted signal that will
reduce the ability of receving stations to copy your station's transmissions. Many radio manuals
advocate controlling the power level with the power control, and while this procedure avoids
expensive customer returns for the radio manufacturer, it does not result in minimum transmitted
distortion and best operating results. The level settings (i.e. the combined USB Audio Device level
settings and the trannsceiver USB Audio Device Level settings) should be adjusted, starting at a
minimum value (to avoid transmitter damage), to achieve no more than 50% of the transmitter
rated output with the transmitter power control set at maximum.

Windows Sound Devices Configuration
The steps necessary to properly configure the Sound support in Windows, with the USB Audio Device
transceiver interface attached to the PC, are as follows:

Attach the USB cable from the transceiver USB Audio Device to the PC.

Right-click on the speaker icon on the Task Bar to bring up a contextual menu.

Select the Sounds menu item.

With the Playback tab view selected, you will see that the USB Audio CODEC indicates that it is
the Default Device. You will need to set another device as the Playback Default Device.

Locate another Playback audio device, which does not indicate Not Plugged In, and right-click
on that device to bring up a contextual menu. In this example, the Realtek High Definition Audio
Speakers are used. When the contextual menu is displayed, select the Set as Default Device
menu item.

On the same Playback audio device used in the previous step, right-click on the device to bring
up the contextual menu. When the contextual menu is displayed, select the Set as Default
Communications Device menu item.

Single-click on the USB Audio Codec Speakers device that is the transceiver USB Audio Output
Device.

Click on the Properties button and select the Levels tab view. If the USB Audio Interface is
built-in to the transceiver, set the level to 100 so that the menus within the transceiver have the
full range of control. If using an external USB Audio Device that has level control knobs (e.g.
SignaLink or similar), set the level to 100 so that the full range of control is available. If you are
using an external (not built in to the transceiver) USB Audio Device interface that has no knobs
for level control, you will need to set the level control as appropriate for your transceiver.

Click the OK button to close the Speakers Properties window.

With the Recording tab view selected, you will see that the USB Audio CODEC indicates that it is
the Default Device. You will need to set another device as the Playback Default Device.

Locate another Recording audio device, which does not indicate Not Plugged In, and right-click
on that device to bring up a contextual menu. In this example, the Realtek High Definition Audio
Microphone is used. When the contextual menu is displayed, select the Set as Default Device
menu item.

On the same Recording audio device used in the previous step, right-click on the device to bring
up the contextual menu. When the contextual menu is displayed, select the Set as Default
Communications Device menu item.

Single-click on the USB Audio Codec Microphone device that is the transceiver USB Audio input
Device.

Click on the Properties button and select the Levels tab view. Set the Microphone and set the
levels to 100.

Click the OK button to close the Microphone Properties window.

Click the OK button to close the Sound window.

MAC OS Sound Devices Configuration
Mac OS has very similar issues to that of Windows. Upon attaching a USB Audio Device that has an endpoint
that describes a speaker, Mac OS selects that device as the default audio device for output. Similar issues
occur with input devices.

Like Windows, this is not desirable in that audio that is not intended to be transmitted, or audio, that if
transmitted, could result in a violation of FCC regulations, could be imposed upon the end user by this
operating system behavior.

To resolve this issue on Mac OS, after attaching the USB Audio Device (i.e. transceiver with a built-in USB
Audio Device, or radio sound card USB Audio Device, such as the SignaLink USB), you will need to perform
the following steps to configure the audio support to avoid such issues:

Navigate to the Apple menu and select System Preferences.

In the System Preferences window, select the Sound icon.

In the Sound pane, select the Output tab view.

Select the output device that you wish to have audio routed to for all no radio digital
communications applications (i.e. Mail sounds, Messages sounds, FaceTime Sounds, Skype
sounds, iTunes sounds, etc.). Typically, this will be Internal Speakers, Headphones, or an external
device that is attached via the DisplayPort connector.

In the Sound pane, select the Input tab view.

Select the audio device that you wish to use for recording (i.e. Skype, FaceTime, Garage Band,
etc.). Typically, this will be the Internal Microphone.

Close System Preferences.

After Configuring the Operating System Default Audio Devices
After completion of configuring the operating system default audio devices, launch what ever digital
communications applications you use and then use the user-interface in that application to select the audio
device that you wish to use with that application.

Hot Microphones
Current transceiver design, with built-in USB Audio Device interfaces, internally route audio only from the
source that is keying the radio. For radios with this design paradigm, the microphone is not hot while the
transceiver is keyed and transmitting through the USB Audio Device interface. For early transceivers that
have a built-in USB Audio Device Interface, or for transceivers using an external USB Audio Device interface,
such as the SignaLink USB, the microphone is most certainly hot while transmitting digital communications
via the USB Audio Interface.

A number of radio operators are not aware that their microphone is hot while transmitting digitally. There
are countless cases of hearing business calls and arguments between spouses by stations transmitting
digital data, and particularly on digital modes that have long key down times, such as JT-65.

Many digital modes consume very little radio spectrum. Microphone audio, on the other hand, can be several
kilohertz wide, and can reduce communications capabilities of other stations due to the broader band
interference caused by a hot mic.

It is vitally important that, if your transceiver presents a hot microphone when transmitting digital
communications, you must disconnect your microphone to avoid causing interference (or possibly
embarrassing transmissions).

To test if the microphone is hot, reduce the audio drive (either by menu on the transceiver with a built-in
USB Audio Device interface or by turning down the TX level knob on an external USB Audio Device such as
the SignaLink). Then key the radio from the digital communications software (use the Tune button if
available) and tap on your microphone while monitoring the transmitter output power level. If you observe
fluctuation of the transmitter output while tapping on the microphone, then your microphone is HOT during
digital communications and you must disconnect the microphone during digital communications.

Difficulties Presented by Number of USB Audio Devices
There are other issues, related to the implementation of USB Audio Devices by manufacturers of radios,
radio sound cards, audio mixers, and a host of other audio related products, that present issues for the radio
amateur who wishes to use more than one USB Audio Device at the same time.

Each USB device includes a Device Descriptor, which contains attributes to uniquely identify the USB device.
Among these are a Vendor ID, Product ID Manufacturer String and Product String. These attributes are
intended to be used to uniquely identify the device, for the purposes of loading the appropriate driver for
the device, and to uniquely represent the device for user interface elements involving device selection.

The Vendor ID and Product ID are used by the operating system to load the appropriate driver for the device
when a vendor and product specific driver is required. For standard devices, such as a USB Audio Device,
which does not require a vendor and product specific driver, the device class and subclass fields inform the
operating system as to which driver to load.

The Manufacturer String and Product String are used to present the device in the user interface where
device selection needs to be supported.

The issue is that the majority of USB Audio Devices identify themselves simply as USB Audio Codec. This is
due to the device manufacturers (i.e. the radio manufacturers, radio sound card manufacturers, etc.)
purchasing silicon from the integrated circuit manufacturers without ordering with a masking option to
implement a vendor ID, device ID and product string that would uniquely identify the end product that is
purchased by a consumer. Since customer specific masking was not ordered, all of these device then revert
to a default USB device descriptor. The result is that all of these consumer devices are then identified as
being the exact same thing.

Here is an example of a TigerTronics SignaLink USB Radio Sound Device:

 Device Descriptor
 Descriptor Version Number: 0x0110
 Device Class: 0 (Composite)
 Device Subclass: 0
 Device Protocol: 0
 Device MaxPacketSize: 8
 Device VendorID: 0x08BB (Texas Instruments Japan)
 ProductID: 0x2904
 Device Version Number: 0x0100
 Number of Configurations: 1
 Manufacturer String: 1 Burr-Brown from TI
 Product String: 2 USB Audio CODEC
 Serial Number String: 0 (none)

Here is an example of the Kenwood TS-590SG Transceiver:

 Device Descriptor
 Descriptor Version Number: 0x0200
 Device Class: 0 (Composite)
 Device Subclass: 0
 Device Protocol: 0
 Device MaxPacketSize: 8
 Device VendorID: 0x08BB (Texas Instruments Japan)
 ProductID: 0x29B3
 Device Version Number: 0x0100
 Number of Configurations: 1
 Manufacturer String: 1 Burr-Brown from TI
 Product String: 2 USB Audio CODEC
 Serial Number String: 0 (none)

Here is an example of the Icom IC-F8101 Transceiver:

 Device Descriptor
 Descriptor Version Number: 0x0110
 Device Class: 0 (Composite)
 Device Subclass: 0
 Device Protocol: 0
 Device MaxPacketSize: 8
 Device VendorID: 0x08BB (Texas Instruments Japan)
 ProductID: 0x2901
 Device Version Number: 0x0100
 Number of Configurations: 1
 Manufacturer String: 1 Burr-Brown from TI
 Product String: 2 USB Audio CODEC
 Serial Number String: 0 (none)

Here is an example of the Behringer XENYX 1204 USB Audio Mixer:

 Device Descriptor
 Descriptor Version Number: 0x0110
 Device Class: 0 (Composite)
 Device Subclass: 0
 Device Protocol: 0
 Device MaxPacketSize: 8
 Device VendorID: 0x08BB (Texas Instruments Japan)
 ProductID: 0x2902
 Device Version Number: 0x0100
 Number of Configurations: 1
 Manufacturer String: 1 Burr-Brown from TI
 Product String: 2 USB Audio CODEC
 Serial Number String: 0 (none)

For all the products above, the Manufacturer String and Product String contents are identical. This results in
one of two behaviors:

All devices are listed in user interface elements with the exact same name (i.e. USB Audio CODEC), making
it nearly impossible for the user to make a proper device selection in the user interface when more than one
device of the same Product String is attached.

In cases where the Product String is populated into an array (e.g. a menu list on Mac OS), the array
excludes allowing entries for multiple devices of the same name, making only the first device discovered by
the operating system available for user selection.

Similarly, the Serial Number String has also been left with a default value of zero, creating the exact same
problem for a user attaching two of the same type of device (e.g. two SignaLink devices, as might be used
for a VHF radio and a UHF radio).

The list of devices on the market that exhibit this common data in the USB Device Descriptor is endless.

This issue is wide-spread. All of the device manufacturers blame the operating system, and all of the
operating system vendors blame the device manufacturers. The truth is that the entire issue would not exist
if the device manufacturers paid for the masking charge and had their own Vendor ID, Product ID, Vendor
String and Product String masked into the device.

Who wouldn't want their Kenwood TS-590SG to show up in the operating system as a Kenwood TS-590SG?

To fix this issue, it is only necessary for the device manufacturer to specify a USB Audio Device Descriptor
that changes the Manufacturer and Product Strings. It is not necessary to fix the Vendor ID and Product ID
values (although that might be nice).

Imagine a TigerTronics SignaLink USB Radio Sound Device USB Audio Device Descriptor that looked like:

 Device Descriptor
 Descriptor Version Number: 0x0110
 Device Class: 0 (Composite)
 Device Subclass: 0
 Device Protocol: 0
 Device MaxPacketSize: 8
 Device VendorID: 0x08BB (Texas Instruments Japan)
 ProductID: 0x2904
 Device Version Number: 0x0100
 Number of Configurations: 1
 Manufacturer String: 1 TigerTronics
 Product String: 2 SignaLink
 Serial Number String: 0 (none)

Imagine a Kenwood TS-590SG Transceiver USB Audio Device Descriptor that looked like:

 Device Descriptor
 Descriptor Version Number: 0x0200
 Device Class: 0 (Composite)
 Device Subclass: 0
 Device Protocol: 0
 Device MaxPacketSize: 8
 Device VendorID: 0x08BB (Texas Instruments Japan)
 ProductID: 0x29B3
 Device Version Number: 0x0100
 Number of Configurations: 1
 Manufacturer String: 1 Kenwood
 Product String: 2 TS-590SG
 Serial Number String: 0 (none)

Imagine an Icom IC-F8101 Transceiver USB Audio Device Descriptor that looked like:

 Device Descriptor
 Descriptor Version Number: 0x0110
 Device Class: 0 (Composite)
 Device Subclass: 0
 Device Protocol: 0
 Device MaxPacketSize: 8
 Device VendorID: 0x08BB (Texas Instruments Japan)
 ProductID: 0x2901
 Device Version Number: 0x0100
 Number of Configurations: 1
 Manufacturer String: 1 Icom
 Product String: 2 IC-F8101
 Serial Number String: 0 (none)

Imagine a Behringer XENYX 1204 USB Audio Mixer USB Audio Device Descriptor that looked like:

 Device Descriptor
 Descriptor Version Number: 0x0110
 Device Class: 0 (Composite)
 Device Subclass: 0
 Device Protocol: 0
 Device MaxPacketSize: 8
 Device VendorID: 0x08BB (Texas Instruments Japan)
 ProductID: 0x2902
 Device Version Number: 0x0100
 Number of Configurations: 1
 Manufacturer String: 1 Behringer
 Product String: 2 XENYX 1204
 Serial Number String: 0 (none)

These imaginary device descriptors are exactly what was intended when USB was created, and is part of the
basis for Plug And Play features. The failure of these devices to not live up to the goals of Plug And Play
is not the fault of the silicon manufacturer or the operating system manufacturers, but is most likely due to
the device manufacturers either being unaware that they should be masking the device descriptor or in the
economics of avoiding the expenditure of doing so.

Probably the only way that this issue is going to get resolved is by customers applying pressure to the
device manufacturers to have the silicon masked uniquely for their product. For all the difficulty this causes,
having the consumer pay $1 more per device would certainly remove hundreds of dollars worth of
headache.

